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In this paper, we study electron transfer networks. These are generalisations of elec-
tron transport chains, and consist of a set of substrates which can exist in reduced and
oxidised forms. The reduced forms can transfer electrons to the oxidised forms, and
there are some electron inflow and outflow processes. We show that under mild assump-
tions, such systems can have only very simple behaviour, with a single globally stable
equilibrium. To prove this we show that the Jacobian of the system has negative loga-
rithmic norm in an appropriate norm. From this result, uniqueness and global stabi-
lity of any equilibrium follows. The results extend, with only minor modifications, to
binary interconversion networks, where the only allowed reactions are interconversions
between substrates, and inflow/outflow processes.
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1. Introduction

Electron transfer networks are generalisations of electron transport chains,
for example in mitochondria as described in [1] and studied mathematically in
[2, 3]. In both cases there are a set of substrates, each of which is assumed to
exist in either a reduced or an oxidised state. In a chain, the assumption is that a
given reduced substrate can only transfer its electron to the next substrate in the
chain, while in a network, each reduced substrate is able, in principle, to transfer
electrons to any oxidised substrate. Since we may choose to rule out some elec-
tron transfers, a given network has a particular topology, of which a chain is one
example. We will prove a strong result about networks with arbitrary topology
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and under very general dynamical assumptions: that there must be a single glo-
bally stable equilibrium. Although initially phrased in terms of electron transfers,
we will show that with minor modifications the results apply to arbitrary inter-
conversion networks.

This paper is in the spirit of [3, 4] in that only weak dynamical assumptions
need to be made for the results to hold – essentially that reaction rates depend
monotonically on substrate concentrations. However the techniques used here
are somewhat different, involving “logarithmic norms” (also known as Lozinskii
measures) rather than monotonicity. Thanks to these tools, the tridiagonal struc-
ture which proved important for the results in [3] is no longer necessary.

Our attention was drawn to the fact that powerful global stability results
can be obtained using logarithmic norms by the exciting work of Li, Muldowney
and co-workers ([5, 6] for example). In this work, a criterion which rules out the
existence of nonwandering points other than equilibria is constructed. The basic
technique involves showing that if some logarithmic norm on the second addi-
tive compound of the Jacobian of a system is always negative, then this severely
restricts the asymptotic behaviour of trajectories. Here we use simpler and older
results on logarithmic norms, needing only to find an appropriate norm for the
Jacobian rather than its second additive compound (although, incidentally, the
second strategy is also successful).

2. The system

In this section, the chemical system to be studied is described. We assume
that there are n substrates, each of which can exist in an oxidised state Ai and
a reduced state Bi . These states are related by the transfer of an electron:

Ai + e− � Bi

xi will refer to the concentration of Bi . The total quantity of Ai +Bi is assumed
constant at xi,tot so that [Ai] = xi,tot − xi . It is useful to define the vector x ≡
[x1, x2, . . . , xn]T . For each i:

0 � xi � xi,tot.

We call the closed rectangle in R
n satisfying these inequalities R, so that x ∈ R.

The fact that the phase space for this system is bounded and convex will prove
important to later results. Since the totals are conserved, it is useful to refer to
the “ith substrate”, meaning this substrate in either reduced or oxidised form.
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2.1. Electron transfers between substrates

An electron transfer between the ith and j th substrates takes the form

Bi + Aj � Ai + Bj .

Given any 1 � i < j � n, we define fij to be the net rate at which the above
reaction proceeds to the right, and allow fij to take both positive and negative
values. Because the totals are conserved, we can write fij (xi, xj ). If a transfer
cannot occur between ith and j th substrates, then fij is identically zero. We also
allow the possibility that some transfers are irreversible – if this is so then we will
have one of the conditions fij � 0 or fij � 0. Clearly if substrate i is entirely
reduced then it can accept no more electrons, and if it is entirely oxidised, then
it can donate no electrons, so we get the natural conditions

fij (0, ·) � 0, fij (xi,tot , ·) � 0, fij (·, xj,tot ) � 0 and fij (·, 0) � 0.

In order to be able to refer to a reaction, it is helpful to order the reactions.
To do this, we order lexicographically ordered pairs of the form (i, j), where 1 �
i < j � n. There are m = n(n−1)

2 such pairs. The kth member of this sequence
is the pair (ik, jk), and the kth reaction is the reaction which transfers electrons
between substrates ik and jk. It is useful to use this terminology, even when no
electron transfer takes place, in which case fik,jk

= 0. When j < i, we formally
define fij ≡ −fji . This introduces no new reactions into the system, but is useful
for notational purposes later.

Define the m-vector of reaction rates f ≡ [fi1,j1, . . . , fim,jm]T , and define
an n×m matrix S̃ as follows: S̃ik = 0 if the ith substrate does not participate in
the kth reaction, i.e. either i �∈ {ik, jk} or i ∈ {ik, jk} but fik,jk

= 0; S̃ik = −1 if
i = ik (i.e. it is the smaller index) and the kth reaction has nonzero rate; S̃ik = 1
if i = jk (i.e. it is the larger index) and the kth reaction has nonzero rate. The
matrix S̃ is a generalised stoichiometric matrix.

Defining f k
ij ≡ ∂fij

∂xk
, we have three possibilities

• if k �∈ {i, j}, then f k
ij is identically 0,

• if k ∈ {i, j} but there is no electron transfer between the ith and j th sub-
strates then f k

ij is identically 0.

• if k ∈ {i, j} and there is an electron transfer between the ith and j th sub-
strates, then f i

ij > 0 and f
j
ij < 0.

Note that the final statement contains an assumption – it says that an increase
in reduction levels increases rates of electron transfer, and vice versa. It could be
rephrased as “reaction rates depend strictly monotonically on substrate concen-
trations”, and is our only assumption on the functions fij . The assumption is
compatible with either reversible or irreversible electron transfers, but even for
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irreversible transfers, the redox states of both substrates influence the rate of
transfer. Note also that the statement is mathematically meaningful even on the
boundaries of phase space – i.e. when xi = 0 or xi = xi,tot for some i.

2.2. Inflow and outflow of electrons

In order to complete the definition of the system we need to include one
more set of processes: these are processes which reduce or oxidise individual sub-
strates, but are external to the network, which we will term inflow and outflow
processes. We can lump all inflow and outflow processes for the ith substrate into
a single process. We will refer to gi(xi) as the rate of reduction minus the rate of
oxidation of the ith substrate by external processes. If substrate i is entirely redu-
ced it can accept no more electrons, and if it is entirely oxidised, it can donate
no electrons, so we get:

gi(0) � 0, gi(xi,tot) � 0

Defining g
j
i ≡ ∂gi

∂xj
we see that again there are three possibilities

• if i �= j , then g
j
i is identically zero,

• if there are no inflow/outflow processes involving substrate i, then gi
i is

identically zero,

• otherwise gi
i < 0.

Again the third possibility is a monotonicity assumption – it says that an incre-
ase in reduction of substrate i causes a decrease in the rate at which substrate
i accepts electrons from outside the network, or donates electrons to substrates
outside the network. If, for some i, gi is not identically zero – i.e. the ith sub-
strate is subject to an inflow or outflow process – then we will say that substrate
i is “terminal”. We will term the set of indices of terminal substrates α(1). Let-
ting g = [g1, . . . , gn]T , the dynamics of the system now becomes

ẋ = S̃f (x) + g(x).

Defining an augmented matrix

S = [S̃|In],
where In is the n × n unit matrix, and a function

v(x) ≡
[

f (x)

g(x)

]

the system can be written more concisely as

ẋ = Sv(x). (1)
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Our assumptions so far mean that the closed rectangle R is forward invariant
under (1). This follows quite naturally from the conditions we have placed on the
functions fij and gi , and the proof is an easy extension of the analogous proof
in [3].

3. The Jacobian matrix

We define the m × n matrix Ṽ by

Ṽkj ≡ ∂fik,jk

∂xj

the diagonal matrix G by Gij ≡ g
j
i , and the matrix V by

V =
[

Ṽ

G

]

so that the Jacobian matrix of the system can be written either as J = S̃Ṽ + G

or more concisely as

J = SV.

A direct calculation gives that:

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

g1
1 − ∑

j �=1 f 1
1j

f 2
21 f 3

31 · · · f n
n1

f 1
12 g2

2 − ∑
j �=2 f 2

2j
f 3

32 · · · f n
n2

f 1
13 f 2

23 g3
3 − ∑

j �=3 f 3
3j

· · · f n
n3

...
...

...
. . .

...

f 1
1n

f 2
2n

f 3
3n

· · · gn
n − ∑

j �=n f n
nj

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Note that all diagonal entries are clearly nonpositive, and we will later make an
assumption which ensures that they are all negative. Further, all off-diagonal ent-
ries are nonnegative, though many of them may be zero. These off-diagonal zeros
are symmetrically placed, and their positions reflect the topology of the network.
It is immediate that J is diagonally dominant, i.e.

|Jjj | −
∑
i �=j

|Jij | � 0.

If substrate j is terminal – i.e. g
j
j �= 0 – then the Jacobian is strictly diagonally

dominant in the j th column. When we want to make explicit that the Jacobian
depends on x, we will write J (x).
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3.1. The Jacobian structure as a graph

Given any set of matrices with the same sign structure, it is generally use-
ful to represent this structure as a directed graph. In this case, we construct an
undirected graph G on n + 1 nodes as follows: nodes 1 to n correspond to the n

substrates, while one node, which we will call node 0, corresponds to the “out-
side” (this follows the original terminology of Ref. [7] who refers to the “zero
complex”). For 1 � i, j � n, an edge between nodes i and j means that fij is
not identically zero, i.e. Jij , Jji �= 0. On the other hand, an edge between nodes
i and 0 means that node i is terminal, i.e. gi

i �= 0.
The reason that G is an undirected graph is that even though electron trans-

fers may be irreversible, the rate of transfer always depends on both redox states,
reflected mathematically in the fact that Jij �= 0 ⇔ Jji �= 0. We now intro-
duce a minimal assumption on the network to ensure nondegenerate behaviour:
G is connected. This holds true if and only if there is a path in G from any
node to node 0, but should not be interpreted as meaning that any substrate can
eventually transfer electrons to some substrate outside the network. The correct
interpretation is that the redox state of any substrate is eventually affected by
that of some substrate outside the network. It follows that all diagonal entries
in J are negative since any substrate is either involved in some electron transfer
or is terminal.

So we characterise the Jacobian of an electron transfer network by the fol-
lowing four conditions:

1. J has nonpositive diagonal elements, and non-negative offdiagonal
elements,

2. J is columnwise diagonally dominant,

3. J has symmetrically placed off-diagonal zeros (i.e. Jij �= 0 ⇔ Jji �= 0),

4. The associated undirected graph G is connected.

The first three conditions are automatic from physical assumptions. Condition 4
is a genericity assumption which, together with the first three conditions implies
that J has negative diagonal entries, and J is strictly dominant in columns from
some nonempty set α(1) ⊂ {1, . . . , n}.

We have the following preliminary result:

Lemma 1. Given a matrix J which satisfies the conditions (1–4) above, every
principal submatrix of J is strictly diagonally dominant in at least one column.

Proof. The statement for J itself follows because α(1) is nonempty. Any prin-
cipal submatrix of J can be constructed by sequentially removing rows and
columns from J . Consider J{j}, the principal submatrix of J of order n − 1
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with j th row and column removed. If substrate j was not terminal, or was not
the only terminal substrate, then J{j} remains strictly dominant in some other
column corresponding to a terminal substrate. On the other hand, if j was the
only terminal substrate, then there must be some substrate i involved in an
electron transfer with substrate j so that Jji �= 0. J{j} is now clearly strictly
dominant in the column corresponding to substrate i. Thus the set of columns
in which J{j} is strictly dominant is

α
(1)
{j} ≡ α(1)\{j} ∪ {i|i �= j, Jji �= 0},

which is not empty (if α(1) = {j}, then {i|i �= j, Jji �= 0} cannot be empty).
This proves that all principal submatrices of J of order n − 1 are diagonally
dominant and strictly dominant in at least one column. Now each of these
submatrices itself fulfils the four assumptions on J . Formally, the new graph G{j}
corresponding to J{j} is constructed from G by identifying vertices 0 and j . It is
clearly still connected, and nodes from α

(1)
{j} are terminal.

We can continue the argument inductively to get that every principal sub-
matrix of order n − 2 is diagonally dominant in at least one column. And so on
for all principal submatrices. �

The above argument shows that J is certainly Hurwitz (and thus any fixed
points of the system must be locally stable). Further, −J is a nonsingular M

matrix [8]. We now develop the machinery to prove directly global stability of
a unique equilibrium.

4. Global stability

In this section, we will show that with the assumptions we have made so far,
the system has a unique, globally stable, equilibrium. The existence of an equi-
librium follows immediately from the fact that the phase space R is a compact,
convex, invariant set. The Brouwer fixed point theorem then assures us that the
flow will have a fixed point in R. Uniqueness and global stability of this equili-
brium then follow from two facts:

1. There is a logarithmic norm µ such that µ(J ) < 0.

2. This implies global stability of the equilibrium.

4.1. Logarithmic norms

Logarithmic norms – or Lozinskii measures – were introduced indepen-
dently by Dahlquist and Lozinskii in 1958, and have found a wealth of appli-
cations since. A survey can be found in [9] or the more recent [10].
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If ‖ · ‖ denotes a vector norm on R
n, and also the induced matrix norm on

n × n matrices, then the logarithmic norm of an n × n matrix A is defined by

µ(A) = lim
h→0+

‖I + hA‖ − 1
h

. (2)

The following observations will prove useful later:

1. The limit in (2) always exists [9].

2. Convergence in (2) to the limit is monotonic and decreasing. Given any
norm ‖ ·‖ and any matrix A, the function ‖I +hA‖ is convex (as a func-
tion of h). This follows immediately from the triangle inequality since for
λ ∈ (0, 1) and any h1, h2:

‖I + λh1A + (1 − λ)h2A‖ = ‖λ(I + h1A) + (1 − λ)(I + h2A)‖
� λ‖(I + h1A)‖ + (1 − λ)‖(I + h2A)‖

It follows trivially that c(h) ≡ ‖I+hA‖−1 is convex. We now see that c(h)
h

is an increasing function of h. We show this for h � 0, the case relevant
to logarithmic norms (the argument for h � 0 is similar). Consider any
two values h2 > h1 > 0. Define λ = h2−h1

h2
, so that 0 < λ < 1 and

h1 = (1 − λ)h2. Convexity of c implies that

λc(0) + (1 − λ)c(h2) � c((1 − λ)h2) = c(h1).

Noting that c(0) = 0 and dividing through by (1 − λ)h2 gives

c(h2)

h2
� c(h1)

h1

confirming that c(h)
h

is an increasing function. Thus, as h → 0+, c(h)
h

decreases to its limit.

3. Any logarithmic norm µ is convex and hence continuous. Convexity of µ

follows from subadditivity (i.e. µ(A+B) � µ(A)+µ(B) for any matrices
A and B), and the fact that µ(λA) = λµ(A) for λ > 0 [9].

4.2. Constructing an appropriate logarithmic norm

Having defined α(1) as the set of indices of terminal substrates, it is useful
to define α(2) as the union of α(1) and the set of indices of substrates involved
in electron transfers with substrates from α(1). We can proceed inductively and
defined α(k) as the union of α(k−1) and the set of indices of substrates involved
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in electron transfers with substrates from α(k−1). More formally in terms of the
Jacobian

α(1) = {j | |Jjj (x)| −
∑
i �=j

|Jij (x)| > 0},

α(k) = α(k−1) ∪ {i| ∃j ∈ α(k−1) s.t. Jji �= 0}, k = 2, . . . , n.

Note that by our assumption |α(k)| � k for 1 � k � n. Since there are only n

substrates, α(n) = {1, . . . , n}.
Given any electron transfer network with Jacobian J (x), we now construct

a logarithmic norm µ such that µ(J (x)) < 0. If we define the logarithmic norm
µ1 as that derived from the ‖ · ‖1 norm, then a matrix has negative logarithmic
norm µ1 if and only if diagonal entries are negative, and the matrix is strictly
diagonally dominant in every column [9]. From earlier observations about diago-
nal dominance of the Jacobian, it is clear that µ1(J ) � 0 (everywhere). This sug-
gests that by an appropriate recoordinatisation we might find some logarithmic
norm µ for which the inequality becomes strict. Since the phase space is com-
pact this can easily be done:

Theorem 2. Consider a parameterised family of matrices J (x) defined over a
compact metric space X, satisfying

1. J (x) have nonpositive diagonal elements, and non-negative offdiagonal
elements,

2. J (x) are columnwise diagonally dominant,

3. The sets α(k) defined as above are the same for every J (x) and fulfil
|α(k)| � k (k = 1, . . . , n) .

Then there is a logarithmic norm µ such that µ(J (x)) < 0 for all x.

Proof. We have seen that the Jacobians of an electron transfer network fulfil the
hypotheses of the theorem. We will construct in stages a coordinate transforma-
tion such that in the new coordinates every Jacobian will be strictly diagonally
dominant in every column. The end point will be a diagonal matrix D, such that
DJ(x)D−1 is strictly diagonally dominant in every column.

J (x) is diagonally dominant so we have:

|Jjj (x)| −
∑
i �=j

|Jij (x)| � 0

with the inequality being strict if j ∈ α(1). Define

q
(1)
j (x) = 1

2

(
1 + |Jjj (x)|∑

i �=j |Jij (x)|

)
if

∑
i �=j

|Jij (x)| �= 0
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and q
(1)
j (x) = 2 otherwise. So q

(1)
j (x) > 1 for j ∈ α(1) and q

(1)
j (x) = 1 otherwise.

The q
(1)
j (x) are designed so that for any number 1 � q � q

(1)
j (x) we have that

|Jjj (x)| − q
∑
i �=j

|Jij (x)| > 0 j ∈ α(1), (3)

|Jjj (x)| − q
∑
i �=j

|Jij (x)| = 0 j �∈ α(1), (4)

i.e. if we have strict dominance in column j , one can multiply all off-diagonal
entries in column j by q without losing strict dominance.

Let q
(1)
j = minx q

(1)
j (x). Because q

(1)
j (x) > 1 for all j ∈ α(1), and a real

valued continuous function on a compact metric space achieves its maximum
and minimum values, we know that q

(1)
j > 1 for all j ∈ α(1). Clearly q

(1)
j = 1

if j �∈ α(1). Define the constant diagonal matrix D(1) by D
(1)
jj = 1/q

(1)
j , and the

matrices J (1)(x) = D(1)J (x)(D(1))−1. The matrices J (1)(x) are all strictly diago-
nally dominant in columns from the set α(2). To see this we check that

|J (1)
jj (x)| −

∑
i �=j

|J (1)
ij (x)| = |Jjj (x)| − q

(1)
j

∑
i �=j

∣∣Jij (x)
∣∣

q
(1)
i

(5)

� |Jjj (x)| − q
(1)
j

∑
i �=j

∣∣Jij (x)
∣∣ (6)

� 0. (7)

If j ∈ α(2)\α(1) (i.e. substrate j is involved in electron transfers with substrates
from α(1)), then the first inequality (6) is strict, because for some i ∈ α(1), |Jij (x)|
is nonzero and is divided by q

(1)
i which is strictly greater than 1. On the other

hand, if j ∈ α(1), then the second inequality (7) is strict from (3). So for j ∈ α(2),
the inequality is strict.

We have constructed a constant diagonal matrix D(1) such that J (1)(x) =
D(1)J (x)(D(1))−1 is diagonally dominant, and strictly diagonally dominant in
columns from α(2). We can now continue this process, and find a constant diago-
nal matrix D(2) such that J (2)(x) = D(2)J (1)(x)(D(2))−1 is diagonally dominant,
and strictly diagonally dominant in columns from α(3). And so on. After at most
n − 1 steps this construction gives us a matrix J (n−1)(x) which is strictly domi-
nant in all columns since α(n) = {1, . . . , n}. Defining

D ≡ D(n−1)D(n−2) · · ·D(1)

we have J (n−1)(x) = DJ(x)D−1.
Now clearly µ1(J

(n−1)(x)) < 0. Defining the new logarithmic norm µD by
µD(A) = µ1(DAD−1). We see that by the construction above µD(J (x)) < 0 for
the Jacobian J of the system. �
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It is worth noting that we have nowhere needed to make the assumption
that the Jacobian is irreducible.

4.3. A negative logarithmic norm implies global stability

We now come to the second claim and show that the fact that the Jacobian
has a negative logarithmic norm ensures uniqueness and hence global stability of
an equilibrium for the system.

Theorem 3. Consider an autonomous differential equation ẋ = f (x) defined on
some convex, forward invariant subset X ⊂ R

n. Assume that the system has an
equilibrium, and that the Jacobian J (x) = Dxf satisfies µ(J (x)) < 0 for some
logarithmic norm µ. Then the equilibrium is unique and globally stable.

Proof. Assume that 0 ∈ X and the equilibrium is at x = 0 (if the equilibrium
is at x = c, we can define a new variable z = x − c and carry out the working
below). We will prove global stability of the equilibrium, and uniqueness will fol-
low trivially.

Because f (0) = 0, we can write

f (x(t)) = A(t)x(t), where A(t) ≡
∫ 1

0
J (θx(t))dθ.

The integral is defined because we have assumed X to be convex. This rewriting
gives us the ODE in a new form:

ẋ = A(t)x.

We want to show that for every initial condition x(0) ∈ X, limt→∞ ‖x(t)‖ = 0
in the norm associated with µ. This follows from an easy and well known result
provided we can first show that µ(A(t)) < 0. We will now show that

µ(A(t)) ≡ µ

(∫ 1

0
J (θx(t))dθ

)
�

∫ 1

0
µ(J (θx(t)))dθ < 0.

The final inequality is obvious since µ(J (x)) < 0. So, by the definition of the
logarithmic norm, we need only to show that

lim
h→0+

‖I + h
∫ 1

0 J (θx(t))dθ‖ − 1

h
�

∫ 1

0
lim

h→0+
‖I + hJ (θx(t))‖ − 1

h
dθ.

Choose a positive sequence hi → 0+ and define

pi = ‖I + hi

∫ 1
0 J (θx(t))dθ‖ − 1

hi

and qi =
∫ 1

0

‖I + hiJ (θx(t))‖ − 1
hi

dθ.



1366 M. Banaji and S. Baigent / Electron transfer networks

For each i, pi � qi because

‖I + hi

∫ 1
0 J (θx(t))dθ‖ − 1

hi

= ‖ ∫ 1
0 (I + hiJ (θx(t)))dθ‖ − 1

hi

�
∫ 1

0 ‖I + hiJ (θx(t))‖dθ − 1

hi

.

We want to show that the limit of each sequence exists and the inequality holds
in the limit, i.e. that:

p ≡ lim
i→∞ pi = µ

(∫ 1

0
J (θx(t))dθ

)
and q ≡ lim

i→∞ qi =
∫ 1

0
µ(J (θx(t)))dθ

and that p � q. Since p is a logarithmic norm, it follows immediately from the
properties of logarithmic norms in Section 4.1 that pi ↓ p. It is a little harder
to show that qi ↓ q. For fixed t , define

ri(θ) = ‖I + hiJ (θx(t))‖ − 1
hi

.

Again from section 4.1, ri ↓ µ(J (θx(t))). Since ri is decreasing, qi is clearly a
decreasing sequence. To see that it is convergent, we show that ri(θ) is bounded
uniformly above and below and then use the dominated convergence theorem
([11] for example). Because the sequence is decreasing, ri(θ) � maxθ∈[0,1] r0(θ) ≡
rmax. And since ri(θ) ↓ µ(J (θx(t))), we get ri(θ) � minθ∈[0,1] µ(J (θx(t))) ≡ rmin
(this minimum exists because µ is convex and hence continuous). So we have

|ri(θ)| � max{|rmax|, |rmin|}

max{|rmax|, |rmin|} is a constant and clearly integrable. Now, by the dominated
convergence theorem,

lim
i→∞ qi = lim

i→∞

∫ 1

0
ri(θ)dθ =

∫ 1

0
lim

i→∞ ri(θ)dθ =
∫ 1

0
µ(J (θx(t)))dθ.

So qi ↓ q.
We have shown that pi ↓ p, qi ↓ q and pi � qi for each i. It follows trivially

that p � q, for suppose that p > q, then for i sufficiently large qi < p < pi , a
contradiction. This completes the proof that µ(A(t)) < 0.

Now by Lemma 2 in [9], ‖x(t)‖ � e(t) where e(t) is any solution to the
scalar differential equation

ė = µ(A(t))e with e(0) � ‖x(0)‖.
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This has solution

e(t) = e(0) exp
(∫ t

0
µ(A(s))ds

)
.

So e(t) = e(0) exp(−S(t)), where S(t) is an increasing function of time. Thus
‖x(t)‖ decreases along trajectories (except when x(t) = 0), and serves as a Lia-
punov function for the system.

This shows that every trajectory must converge to the equilibrium at 0. It
follows that 0 is the unique equilibrium since the orbit of any other equilibrium
must also converge to 0, a contradiction. �

A technical note: in the above theorem we needed to insist that the system
has an equilibrium. It is possible to construct systems with negative logarithmic
norm on unbounded phase spaces which have no equilibria. For example the one
dimensional system

ẋ = 2 − x/(1 + x)

defined on R+ clearly has negative logarithmic norm in any norm, while it is also
clear that all orbits are unbounded. On the other hand if the phase space X is
compact then existence of an equilibrium is guaranteed by the assumptions of
the theorem.

5. Extension to general binary interconversion networks

The results above extend with minor technical modifications to general
interconversion networks. We define a general interconversion network as fol-
lows. There are n substrates Bi with concentrations xi . The only reactions allo-
wed are of the form

Bi � Bj .

Given any 1 � i < j � n, we define fij to be the total rate of the above reaction
in the forward direction, and allow fij to take both positive and negative values.
fij is in general a function of xi and xj so we can write fij (xi, xj ). We allow the
possibility that some conversions are irreversible – if this is so then we will have
one of the conditions fij � 0 or fij � 0. As before

fij (0, ·) � 0 and fij (·, 0) � 0

Further, we allow inflow and outflow processes. We will refer to gi(xi) as the rate
of production minus the rate of loss of the ith substrate. So:

gi(0) � 0
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Again we define fji = −fij , f k
ij ≡ ∂fij

∂xk
and g

j
i ≡ ∂gi

∂xj
. The Jacobian takes

exactly the same form as for an electron transfer network. If gi
i < 0, then we

term i a terminal substrate, and refer to the set of indices of terminal substrates
as α(1).

Now we come to two important differences between interconversion net-
works and electron transfer networks.

1. The phase space of a general interconversion network is not necessarily
bounded. There is no reason why concentrations cannot become arbitra-
rily large.

2. If some reactions are genuinely irreversible, then even though some fij

might not be identically zero, f i
ij or f

j
ij might still be identically zero.

This means that in the Jacobian we can no longer assume that Jij �= 0 ⇔
Jji �= 0.

The first difference means that we can no longer state that the system must
have an equilibrium a priori. So we introduce as an assumption that the system
has an equilibrium. This is a reasonable assumption because chemical concentra-
tions cannot become arbitrarily large, implying that in reality the phase space is
bounded.

The second difference means that the structure of the Jacobian is somewhat
different. So now we define a directed graph G on n+1 nodes which encodes the
sign structure of the Jacobian – i.e. there is an edge from node i to node j if and
only if Jji > 0. In practice, Jji > 0 means that either

• substrate i can be converted to substrate j , or,

• substrate j can be converted to substrate i at a rate which is inhibited by
an increase in the concentration of substrate i.

A directed edge from node i to node 0 means that i is terminal, and equivalently
that J is strictly dominant in the ith column. In practice this implies that either

• substrate i is subject to an outflow process, or,

• substrate i is subject to an inflow process whose rate is inhibited by incre-
ases in its concentration.

We now introduce a minimal assumption on an interconversion network to
ensure nondegenerate behaviour: there is a directed path in G from any node to
node 0. This assumption has the physical interpretation that the concentration of
any substrate is eventually affected by the concentration of a terminal substrate.
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We again have the definitions

α(1) = {j | |Jjj (x)| −
∑
i �=j

|Jij (x)| > 0},

α(k) = α(k−1) ∪ {i| ∃j ∈ α(k−1) s.t. Jji �= 0}, k = 2, . . . , n

and, as before, |α(j)| � j for 1 � j � n, (and hence α(n) = {1, . . . , n}).
The Jacobian of an interconversion network satisfies the following conditi-

ons

1. J has nonpositive diagonal elements, and non-negative offdiagonal ele-
ments,

2. J is columnwise diagonally dominant,

3. In the associated directed graph G, there is a directed path from any
node i to node 0.

Since we have lost the condition that Jij �= 0 ⇔ Jji �= 0, we have had to strengt-
hen the final assumption about directed paths. This new assumption still implies
that J has negative diagonal entries, and that J is strictly dominant in columns
from some nonempty set α(1) ⊂ {1, . . . , n}.

We now have immediately:

Theorem 4. Assume that we have an interconversion network with Jacobian satis-
fying the three conditions above, and that the phase space contains a convex, for-
ward invariant set B containing an equilibrium. Then this equilibrium is unique
and globally stable.

Proof. The proof is identical to the case of an electron transfer network. The
hypotheses of Theorem 2 are fulfilled, so there is a logarithmic norm µ such that
µ(J ) < 0 everywhere in B. This in turn means, by Theorem 3, that all trajecto-
ries converge to the equilibrium in B, and hence that the equilibrium is unique.
�

6. Conclusions

We have shown that under mild assumptions electron transfer networks and
binary interconversion networks can only have a unique, globally stable steady
state. There are a number of natural continuations to this work.

1. In general, electron transfer networks may involve substrates able to exist
in more than two redox states (e.g. the haem a3 centre in cytochrome c

oxidase [12]). How do the results generalise in this situation?
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2. Do the results on interconversion networks still hold if we replace indi-
vidual substrates with complexes, as in [4]?

3. Since the systems studied here have such simple behaviour, what claims
can one make about their behaviour when interconnected, using for
example the tools of monotone dynamics [13, 14]?

4. How is the behaviour described here affected when the electron transfer/
interconversion processes interact with an external potential as in mit-
ochondria [2, 3], where they are coupled to proton pumping processes
(e.g. [12])? This question is of some biological importance and is a sub-
ject we are tackling in work in preparation.
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